Exercise 30

(a) If $G(x)=4 x^{2}-x^{3}$, find $G^{\prime}(a)$ and use it to find equations of the tangent lines to the curve $y=4 x^{2}-x^{3}$ at the points $(2,8)$ and $(3,9)$.
(b) Illustrate part (a) by graphing the curve and the tangent lines on the same screen.

Solution

Determine the derivative of $G(x)$.

$$
\begin{aligned}
G^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{G(x+h)-G(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[4(x+h)^{2}-(x+h)^{3}\right]-\left[4 x^{2}-x^{3}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[4\left(x^{2}+2 x h+h^{2}\right)-\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)\right]-4 x^{2}+x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(4 x^{2}+8 x h+4 h^{2}-x^{3}-3 x^{2} h-3 x h^{2}-h^{3}\right)-4 x^{2}+x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{8 x h+4 h^{2}-3 x^{2} h-3 x h^{2}-h^{3}}{h} \\
& =\lim _{h \rightarrow 0}\left(8 x+4 h-3 x^{2}-3 x h-h^{2}\right) \\
& =8 x-3 x^{2}
\end{aligned}
$$

Plug in $x=2$ to this formula to get $G^{\prime}(2)$.

$$
G^{\prime}(2)=8(2)-3(2)^{2}=4
$$

This is the slope of the tangent line to the curve at $x=2$. Use the point-slope formula and the provided point $(2,8)$ to get the equation of this line.

$$
\begin{aligned}
y-8 & =4(x-2) \\
y-8 & =4 x-8 \\
y & =4 x
\end{aligned}
$$

Plug in $x=3$ to get $G^{\prime}(3)$.

$$
G^{\prime}(3)=8(3)-3(3)^{2}=-3
$$

This is the slope of the tangent line to the curve at $x=3$. Use the point-slope formula and the provided point $(3,9)$ to get the equation of this line.

$$
\begin{gathered}
y-9=-3(x-3) \\
y-9=-3 x+9 \\
y=-3 x+18
\end{gathered}
$$

Below is a graph of the curve along with the tangent lines at $x=2$ and $x=3$.

